
A Scalable Process-Management Environmentfor Parallel Programs?Ralph Butler1, William Gropp2, and Ewing Lusk21 University of North Florida2 Argonne National LaboratoryAbstract. We present a process management system for parallel pro-grams such as those written using MPI. A primary goal of the system,which we call MPD (for multipurpose daemon), is to be scalable. By thiswe mean that startup of interactive parallel jobs comprising a thousandprocesses is quick, that signals can be quickly delivered to processes, andthat stdin, stdout, and stderr are managed intuitively. Our primarytarget is parallel machines made up of clusters of SMPs, but the systemis also useful in more tightly integrated environments. We describe howMPD enables much faster startup and better runtime management ofMPICH jobs. We show how close control of stdio can support the easyimplementation of a number of convenient system utilities, even a paralleldebugger. MPD is implemented and freely distributed with MPICH.1 IntroductionA parallel programming environment may be viewed as comprising three inter-acting components: a job scheduler, which decides what resources a parallel jobconsisting of multiple processes will run on; a process manager, which startsand terminates processes and provides them with a number of services; and aparallel library such as MPI, which a parallel application calls upon for com-munications. Since these components need to communicate with one another,they are often integrated into a single system. An important research questionis to determine to what extent they can be separated from one another withwell-de�ned interfaces so that they can be independently developed. A furtherresearch question is whether the resulting system can be made scalable to jobsinvolving thousands of communicating processes. In this paper we focus on theprocess manager component. We describe a design and an implementation wecall MPD (for multipurpose daemon) that provides both fast startup of paralleljobs and a
exible run-time environment that supports parallel libraries.In Section 2 we summarize related work. In section 3 we state our explicitdesign goals, how these goals lead to implementation decisions, and interestingfeatures of the resulting system, including how it can be used to create a par-allel debugger out of an existing single-process debugger. Section 4 summarizes? This work was supported by the Mathematical, Information, and Computational Sci-ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,U.S. Department of Energy, under Contract W-31-109-Eng-38.

preliminary experiments that make us optimistic about the usefulness of MPDas a process manager for large-scale systems. We conclude with a summary ofprogress to date and a description of our future plans.The MPD system is in use and is available as open source as part of theMPICH system, obtainable from http://www.mcs.anl.gov/mpi/mpich.2 Related WorkAll parallel computing environments that support execution of truly parallelprograms (those in which any two processes can communicate with one another)have had to address at least some of the issues that we address with MPD.Parallel programming systems, such as PVM [10], P4 [7], and implementationsof MPI such as MPICH [13] and LAM [6] all provide some mechanism for startingand running parallel programs, often with a specialized daemon process.Many systems are intended to manage a collection of computing resourcesfor both single-process and parallel jobs; see the survey by Baker [3]. Typically,these use a daemon that manages individual processes, with emphasis on jobsinvolving only a single process. Widely used systems include PBS [17], LSF[18], DQS [8], and Loadleveler/POE [14]. The Condor system [15] is also widelyused and supports parallel programs that use PVM [19]. Other, more specializedsystems, such as MOSIX [4] and GLUnix [11], provide a form of single-systemimage support for clusters.Harness [5, 16] shares with MPD the goal of supporting management of par-allel jobs. Its primary research goal is to demonstrate the
exibility of the \plug-in" approach to application design, providing a wide range of services, whereasthe MPD system focuses more speci�cally on the design and implementation ofservices required for process management of parallel jobs, including high-speedstartup of large parallel jobs on clusters and scalable standard I/O management.The book [9] provides a good overview of metacomputing systems and issues.3 Design of MPDIn this section we describe our goals in constructing MPD and outline the sys-tem's architecture.3.1 GoalsSeveral explicit goals have governed the design of the MPD system.Simplicity The persistent (across jobs) part of the system should be simpleand robust. In the long run we expect this part to be runnable as root. Ifits behavior isn't completely transparent we will never be able to convincesystem administrators to do so.

Speed Startup of parallel jobs should be quick enough to provide an interactive\feel," so that large but short jobs make sense. Large (in number of processes)but short (in time) characterizes system utilities such as those describedin [12]. Our immediate target is to start 1000 processes in a few seconds,while still providing a way for such processes to establish contact with oneanother. Our long-term goal is to support management of 10,000 processes.Robustness The persistent part of the system should be at least moderatelyfault-tolerant. Unexpected crash of one machine should not bring down thewhole system. There should be no single \master" process.Scalability The complexity or size of any component should not depend on thenumber of components.Individual Process Environments It should be possible to start a paralleljob in which the executable �les, environment variables, and command-linearguments are di�erent for each process. It should be possible to collectreturn codes individually from processes.Collective Identity of a Parallel Job It should be possible to treat a par-allel job as a single entity that can be suspended, continued (signaled, ingeneral), or killed collectively as if it were a single process. The systemshould manage stdin, stdout, and stderr in a useful and scalable way andallow them to be redirected as if the parallel job were a single process. Animportant component of a job's collective identity is its termination. All re-sources allocated for the job, such as �les, System V IPC's, other processes,etc., must be reliably freed, even if the job terminates abnormally.It is explicitly not a goal of the MPD system to provide scheduling services,which we believe to be a separate function from process management.3.2 Deriving the Design from the GoalsThe goals of simplicity and robustness lead us to adopt a multicomponent sys-tem. The daemon itself is persistent (may run for weeks or months at a time,starting many jobs), typically one instance per host in a TCP-connected net-work. Manager processes will be started by the daemons to control the applica-tion processes (clients) of a single parallel job and will provide most of the MPDfeatures. The goal of speed requires that the daemons be in contact with oneanother prior to job startup, and the goals of scalability and \no master" suggestthat the daemons be connected in a ring.1 The services that the managers willprovide (see Section 3.3) suggest that they be in contact as well, and the fastestway for them to form these connections is to inherit part of the ring connectivityof the daemons. Separate managers for each user process support the individualprocess environments. The goal of having a collective identity for a parallel jobleads us to treat the mpirun or mpiexec process as such a representative, anduse it to deliver signals and stdin to application processes and collect stdout1 While a ring is not ultimately scalable, it is more so than the typical star used inmany process management systems, and our experiments have shown it feasible forthe 1000-daemon domain.

and stderr output from them. This suggests that the mpirun process connect�rst to the daemon ring in order to start the job, and then switch the connectionto the manager ring in order to control the job. The goal of speed suggests thatthese latter connections be restricted to a process running on the same host,either the daemon itself or a persistent gateway process if the daemon is run asroot, so that authentication can be through the �le system (a Unix rather thana network socket). We refer to all such processes as console commands. Finally,in order that this infrastructure be available to support MPI programs or otherparallel tools, there needs to be client library that each application process mayuse to interact with its manager.We do not specify how the daemons are started or connected, since the systemprovides a number of alternatives, and the process need not be particularly fast.A console command is started by the user, either interactively or under thecontrol of a batch scheduler. The daemons fork and exec the managers, whichuse information given them by the daemons to connect themselves into a ring,then fork and exec the clients. The startup messages traverse the ring quickly,so most forking, execing, and connecting take place in parallel, leading to faststartup even for large jobs. The situation is then as shown in Figure 1, where the
console

daemons

clients

managersFig. 1. Daemons with console process, managers, and clientsclients may be applicationMPI processes. Solid lines represent sockets, except forthe vertical ones, which represent pipes. The dashed lines represent the trees ofconnections for forwarding stdout and stderr, and the dotted lines representpotential connections among the client processes. The dot-dashed line is theoriginal connection from console to local daemon on a Unix socket, which isreplaced during startup by the network connection to the �rst manager.3.3 Interesting FeaturesSpace restrictions prevent a complete description of all the features and capa-bilities of the MPD system, but in this section we mention a few highlights.Security Whenever a process advertises a \listener" socket and accepts connec-tions on it, the possibility exists that an unknown or even malicious process

will connect. This is particularly dangerous if the process accepting the con-nection can start processes as the MPD daemon can. We currently use the\challenge-response" system described in [20]. In the long run, we expect tomodify this component of the system to use more elaborate schemes and ex-tend them to other connections such as client/gateway authentication. Thiswill have little impact on the job startup speed since the daemon componentstartup is separate from job startup.Fault Tolerance If a daemon dies, this fact is detected and the ring is reknit.This provides a minimal sort of fault tolerance, since the ring remains intact.A new MPD daemon can be inserted in the ring where the old one was, butthis process is not (yet) automatic.Signals Signals can be delivered to client processes by their managers. We cur-rently use this capability in two speci�c ways. First, signals delivered to aconsole process are propagated to the clients, so that a parallel application asa whole can be suspended with cntl-Z, continued, and killed with cntl-C,just as if it were a single process. Second, in the ch p4mpd device in theMPICH implementation of MPI, client processes can interrupt one anotherwith requests to dynamically establish client-to-client connections. Such re-quests go up into the manager ring from the originating client, around thering to the manager of the target process, which signals its client.Support for MPI Implementations Currently MPD provides direct supportfor the MPICH implementation of MPI. The ch p4mpd device distributedwith Version 1.2 of MPICH makes direct calls to the client library compo-nent of the MPD system to �nd out a process's rank, where other processesare and how to contact them, etc. In our next major release of MPICH,the support will be indirect, through a general parallel-library-to-process-manager interface we will describe elsewhere.On clusters of SMPs, it is easy to specify that multiple processes are tobe started on the same machine and share memory. Speci�cally, mpirun -np180 -g 2 cpi starts processes in groups of two and places in their environ-ment a key that can be used to acquire group-attached shared memory andother information needed to set up multimethod communication for an MPIimplementation. Other communication mechanisms (such as VIA) will besupported over time.Handling Standard I/O Mangers capture the stdin and stdout of theirclients, and forward it up a pair of binary trees of socket connections, eachmanager merging stdin and stdout from its client with that from each ofits two children. A command line option tells the managers to provide a ranklabel on each line of output from their clients.Standard input (to mpirun, for example) by default is delivered to theclient managed by manager 0. This seems to be what most MPI users ex-pect, and what most MPI implementations do. (The MPI standard does notspecify.) However, control messages can be used to change this behavior todirect stdin to any speci�c client, or broadcast it to all clients.Client Wrapping The semantics of the Unix fork and exec system calls pro-vide us with useful bene�ts. When a manager forks a client process, for

example, it �rst sets up the manager-client pipes for control messages andstandard I/O. The \lower" ends of these pipes are inherited by any pro-cess that the client forks. Thus even though the client is not using anyof the client library, managers can manage clients that themselves run the\real" application process. We call this scheme client wrapping. Thus mpirun-np 16 nice -5 myprog lowers the priority of a parallel job to be run onone's colleagues' workstations, and mpirun -np 16 pty myprog can be usedwhen myprog needs to be attached to a terminal (otherwise our capture ofstdin and stdout modi�es their bu�ering behavior). (The program pty isdistributed with the MPD system.)Putting It All Together The combination of I/Omanagement, especially redi-rection of stdin, line labels on stdout, and client wrapping can be surpris-ingly powerful. We have used these features of the MPD system to add anoption to mpirun that invokes gdb as a client wrapper and dynamically redi-rects stdin. While mpirun -np 3 cpi runs cpi directly as an MPI job,mpirun -np 3 -d cpi runs each cpi process under the control of (wrappedby) the gdb debugger. (Other sequential debuggers could be used, but arenot yet supported.) Thus multiple instances of gdb are being run. Output ofthe gdb's is labeled by process rank. The \(gdb)" prompts are interceptedby the mpirun process and counted, so that it can issue an \(mpigdb)"prompt when one has been received from each process. In addition, mpirun-d uses the \z" command (one of the few single letters not already claimedby gdb) to redirect stdin to a speci�c gdb instance or to all processes. Thusprocesses can be stepped and breakpoints can be set either collectively orindividually, and collectively printing a variable will provide all values withrank labels. An example terminal session showing how this works can beseen at http://www.mcs.anl.gov/mpi/mpich/mpd/mpigdb.script.4 ExperimentsMost development of MPD has been on workstation networks where startup of32-process jobs on �ve workstations is virtually instantaneous, compared withthe approximately 1.5 seconds per process required by the ch p4 version ofMPICH. An early test of the feasibility of using the ring topology showed thata message could make 1024 hops around the ring in less than .4 seconds, whichgave us con�dence that the ring would not impose scalability limits, at least inthe near term. Recently we began experiments on Chiba City, a testbed for par-allel computer science research [1]. We performed one set of tests on 211 nodesconnected by Fast Ethernet. We were interested only in process startup time,and so tested execution of trivial parallel jobs. Typical experiments includedtime mpirun -np 211 hostnametime mpirun -np 422 -g 2 hostnameWe found that starting 211 processes (one on each node) and collecting thestdout output of hostname took about 2 seconds to execute. Starting twice as

many processes (one for each cpu) took about 3.5 seconds, including setting upthe relatively complex stdout tree and collecting the output. Sending a messagearound the ring of 211 MPD daemons took only .13 seconds. More experimentsare ongoing, and we will soon be able to report on MPI jobs on Chiba City.5 Future DevelopmentThe existing MPD system, consisting of daemons, managers, console commands,and client library, meets our goals of simplicity, robustness, and scalability. It isused for fast startup of MPI jobs and others on systems with hundreds of ma-chines. The
exibility of its stdio control mechanism has provided unexpectedbene�ts, such a \poor man's" parallel debugger. It meets our goals for the col-lective identity of a parallel job. It does not yet meet all of our goals with respectto individual process environments, although that is coming very soon.In the near term, we expect to use the system to implement the dynamicprocess creation part of MPI-2 in MPICH. The design presented here, with asimple daemon and a separate manager process providing most of the featuresneeded by user jobs, allows the daemons to be run as root while the managers arerun as user processes. We expect to begin running the daemon as root on somelarge-scale multi-user systems, in order to provide a persistent job managementsystem. This will require increased attention to security issues as well as a precisede�nition of how MPD will interoperate with a full-featured scheduling systemsuch as the Maui scheduler [2]. We believe that the MPD daemons can also beginto provide more services, such as run-time performance monitoring.In the long run, as machines grow from hundreds to thousands of nodes, ourrings of daemons and managers may have to grow into a more sophisticatedstructure, such as rings of rings, in order to continue to provide fast startup. Weanticipate that this can be done without substantially changing the MPD designpresented here. We will also need a more sophisticated output merger in orderto provide scalable stdout, for example for large-scale parallel debugging.In summary, we are �nding the MPD system already a useful contribution onone's parallel programming environment, and expect its applicability to expandin the near future. We also view its design as a valuable starting point for futureresearch into large-scale parallel job execution environments.References1. Chiba City home page. http://www.mcs.anl.gov/chiba.2. The Maui Scheduler home page. http://maui-scheduler.mhpcc.edu/new doc,http://www.mhpcc.edu/maui.3. M.A. Baker, G.C. Fox, and H.W. Yau. Review of cluster management software.NHSE Review, 1(1), May 1996.4. Amnon Barak, Shai Guday, and Richard G. Wheeler. The MOSIX distributed op-erating system: load balancing for UNIX, volume 672 of Lecture Notes in ComputerScience. Springer-Verlag Inc., New York, NY, USA, 1993.

5. Micah Beck, Jack J. Dongarra, Graham E. Fagg, G. Al Geist, Paul Gray,James Kohl, Mauro Migliardi, Keith Moore, Terry Moore, Philip Papadopoulous,Stephen L. Scott, and Vaidy Sunderam. HARNESS: A next generation distributedvirtual machine. International Journal on Future Generation Computer Systems,15(5/6), 1999.6. Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environmentfor MPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium '94,pages 379{386. University of Toronto, 1994.7. Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallelprogramming system. Parallel Computing, 20:547{564, April 1994.8. DQS home page. http://www.scri.fsu.edu/~pasko/dqs.html.9. I. Foster and eds. C. Kesselman. The Grid: Blueprint for a New Computing In-frastructure. Morgan Kaufmann, 1999.10. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, andVaidy Sunderam. PVM: Parallel Virtual Machine|A User's Guide and Tutorialfor Network Parallel Computing. MIT Press, Cambridge, MA, 1994.11. Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, andThomas E. Anderson. GLUnix: A Global Layer Unix for a network of workstations.Software|Practice and Experience, 28(9):929{961, July 1998.12. William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. InProceedings of the Scalable High-Performance Computing Conference, pages 56{62.IEEE Computer Society Press, 1994.13. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the MPI Message-Passing Interface stan-dard. Parallel Computing, 22(6):789{828, 1996.14. IBM. Loadleveler: Using and Administering, version 2 release 1 edition, November1998. SA22-7311-00.15. M. J. Litzkow, M. Livny, and M. W.Mutka. Condor { A hunter of idle workstations.In Proc. 8th Intl. Conf. on Distributed Computing Systems, pages 104{111, SanJose, Calif., June 1988.16. M. Migliardi and V. Sunderam. PVM emulation in the harness metacomput-ing system: A plug-in based approach. In J. J. Dongarra, E. Luque, and TomasMargalef, editors, Recent advances in parallel virtual machine and message pass-ing interface: 6th European PVM/MPI Users' Group Meeting, Barcelona, Spain,September 26{29, 1999: proceedings, volume 1697 of Lecture Notes in ComputerScience, pages 117{124, Berlin, Germany / Heidelberg, Germany / London, UK /etc., 1999. Springer-Verlag.17. PBS home page. http://pbs.mrj.com/.18. Load Sharing Facility (LSF). http://www.platform.com.19. J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cyclesof workstation clusters. Future Generation Computer Systems, 12(1):67{85, May1996.20. Andrew S. Tanenbaum. Computer Networks. Prentice Hall, third edition, 1996.

